1993
DOI: 10.1007/978-1-4899-4483-2
|View full text |Cite
|
Sign up to set email alerts
|

Markov Models and Optimization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
1,107
0
7

Year Published

1997
1997
2014
2014

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 983 publications
(1,119 citation statements)
references
References 0 publications
5
1,107
0
7
Order By: Relevance
“…Consequently, the natural class of limits will by hybrid or piecewise deterministic (in the sense of Davis [11]) models in which some components are discrete and some are absolutely continuous. See Section 3 of [4] and Section 6.3 of [26] for examples.…”
Section: Hybrid Limitsmentioning
confidence: 99%
“…Consequently, the natural class of limits will by hybrid or piecewise deterministic (in the sense of Davis [11]) models in which some components are discrete and some are absolutely continuous. See Section 3 of [4] and Section 6.3 of [26] for examples.…”
Section: Hybrid Limitsmentioning
confidence: 99%
“…A suitable mathematical framework for defining our model could be that of Piece-wise Deterministic Markov Processes (PDMPs) [15], where continuous flows defined as systems of ODEs are reset by stochastic jumps distributed according to exponential distributions. Therefore, one would naturally associate changes in the random environment with such jumps, and the queueing network dynamics within one stage as a continuous flow by the fluid model.…”
Section: Related Workmentioning
confidence: 99%
“…It is known that X can be endowed with a metric ρ whose restriction to any component X i is equivalent to the natural Euclidean metric of this component Davis [1993]. Then (X, B(X)) is a Borel space (homeomorphic to a Borel subset of a complete separable metric space), where B(X) is the Borel σ-algebra of X.…”
Section: The Computational Modelmentioning
confidence: 99%
“…The meaning of the elements of M can be found in any source treating continuous-parameter Markov processes (for e.g. Blumenthal et al [1968] or Ethier et al [1986] or Davis [1993]). We adjoin an extra point ∆ (the cemetery) to X as an isolated point,…”
Section: The Computational Modelmentioning
confidence: 99%