Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id="M3">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id="M4">\begin{document}$ \mathscr{P} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M7">\begin{document}$ R $\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id="M8">\begin{document}$ W $\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id="M9">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id="M10">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id="M11">\begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M12">\begin{document}$ \widehat{\mathscr{P}}|_W $\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id="M13">\begin{document}$ \widehat{R}|_W $\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id="M14">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id="M15">\begin{document}$ W $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id="M16">\begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id="M17">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr{P}}_0 $\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id="M19">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M20">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id="M21">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id="M22">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M23">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>
<p style='text-indent:20px;'>We extend the notion of Rauzy induction of interval exchange transformations to the case of toral <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation, i.e., <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action defined by rotations on a 2-torus. If <inline-formula><tex-math id="M3">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> denotes the symbolic dynamical system corresponding to a partition <inline-formula><tex-math id="M4">\begin{document}$ \mathscr{P} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M7">\begin{document}$ R $\end{document}</tex-math></inline-formula> is Cartesian on a sub-domain <inline-formula><tex-math id="M8">\begin{document}$ W $\end{document}</tex-math></inline-formula>, we express the 2-dimensional configurations in <inline-formula><tex-math id="M9">\begin{document}$ \mathscr{X}_{\mathscr{P}, R} $\end{document}</tex-math></inline-formula> as the image under a <inline-formula><tex-math id="M10">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-dimensional morphism (up to a shift) of a configuration in <inline-formula><tex-math id="M11">\begin{document}$ \mathscr{X}_{\widehat{\mathscr{P}}|_W, \widehat{R}|_W} $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M12">\begin{document}$ \widehat{\mathscr{P}}|_W $\end{document}</tex-math></inline-formula> is the induced partition and <inline-formula><tex-math id="M13">\begin{document}$ \widehat{R}|_W $\end{document}</tex-math></inline-formula> is the induced <inline-formula><tex-math id="M14">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-action on <inline-formula><tex-math id="M15">\begin{document}$ W $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>We focus on one example, <inline-formula><tex-math id="M16">\begin{document}$ \mathscr{X}_{\mathscr{P}_0, R_0} $\end{document}</tex-math></inline-formula>, for which we obtain an eventually periodic sequence of 2-dimensional morphisms. We prove that it is the same as the substitutive structure of the minimal subshift <inline-formula><tex-math id="M17">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> of the Jeandel–Rao Wang shift computed in an earlier work by the author. As a consequence, <inline-formula><tex-math id="M18">\begin{document}$ {\mathscr{P}}_0 $\end{document}</tex-math></inline-formula> is a Markov partition for the associated toral <inline-formula><tex-math id="M19">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M20">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula>. It also implies that the subshift <inline-formula><tex-math id="M21">\begin{document}$ X_0 $\end{document}</tex-math></inline-formula> is uniquely ergodic and is isomorphic to the toral <inline-formula><tex-math id="M22">\begin{document}$ \mathbb{Z}^2 $\end{document}</tex-math></inline-formula>-rotation <inline-formula><tex-math id="M23">\begin{document}$ R_0 $\end{document}</tex-math></inline-formula> which can be seen as a generalization for 2-dimensional subshifts of the relation between Sturmian sequences and irrational rotations on a circle. Batteries included: the algorithms and code to reproduce the proofs are provided.</p>
We look at constructions of aperiodic subshifts of finite type (SFTs) on fundamental groups of graph of groups. In particular, we prove that all generalized Baumslag-Solitar groups (GBS) admit a strongly aperiodic SFT. Our proof is based on a structural theorem by Whyte and on two constructions of strongly aperiodic SFTs on $\mathbb {F}_n\times \mathbb {Z}$ and $BS(m,n)$ of our own. Our two constructions rely on a path-folding technique that lifts an SFT on $\mathbb {Z}^2$ inside an SFT on $\mathbb {F}_n\times \mathbb {Z}$ or an SFT on the hyperbolic plane inside an SFT on $BS(m,n)$ . In the case of $\mathbb {F}_n\times \mathbb {Z}$ , the path folding technique also preserves minimality, so that we get minimal strongly aperiodic SFTs on unimodular GBS groups.
Two asymptotic configurations on a full $\mathbb {Z}^d$ -shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$ . We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$ . Many open questions are raised by the current work and are listed in the introduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.