In this paper, the diffusion is introduced to an immunosuppressive infection model with delayed antiviral immune response. The direction and stability of Hopf bifurcation are effected by time delay, in the absence of which the positive equilibrium is locally asymptotically stable by means of analyzing eigenvalue spectrum; however, when the time delay increases beyond a threshold, the positive equilibrium loses its stability via the Hopf bifurcation. The stability and direction of the Hopf bifurcation is investigated with the norm form and the center manifold theory. The stability of the Hopf bifurcation leads to the emergence of spatial spiral patterns. Numerical calculations are performed to illustrate our theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.