Preeclampsia (PE) complicates ∼5% of human pregnancies and is one of the leading causes of pregnancy-related maternal deaths. The only definitive treatment, induced delivery, invariably results in prematurity, and in severe early-onset cases may lead to fetal death. Many currently available antihypertensive drugs are teratogenic and therefore precluded from use. Nonteratogenic antihypertensives help control maternal blood pressure in PE, but results in preventing preterm delivery and correcting fetal growth restriction (FGR) that also occurs in PE have been disappointing. Here we show that dietary nicotinamide, a nonteratogenic amide of vitamin B 3 , improves the maternal condition, prolongs pregnancies, and prevents FGR in two contrasting mouse models of PE. The first is caused by endotheliosis due to excess levels in the mothers of a soluble form of the receptor for vascular endothelial growth factor (VEGF), which binds to and inactivates VEGF. The second is caused by genetic absence of Ankiryn-repeat-and-SOCS-box-containingprotein 4, a factor that contributes to the differentiation of trophoblast stem cells into the giant trophoblast cells necessary for embryo implantation in mice; its absence leads to impaired placental development. In both models, fetal production of ATP is impaired and FGR is observed. We show here that nicotinamide decreases blood pressure and endotheliosis in the mothers, probably by inhibiting ADP ribosyl cyclase (ADPRC), and prevents FGR, probably by normalizing fetal ATP synthesis via the nucleotide salvage pathway. Because nicotinamide benefits both dams and pups, it merits evaluation for preventing or treating PE in humans.he maternal hypertension and proteinuria characterizing preeclampsia (PE) are primarily consequences of an imbalance between proangiogenic growth factors that promote vascular well-being (such as VEGF), and antiangiogenic factors that sequester the growth factors (such as the soluble form of VEGF receptor-1, now referred to as sFLT1) (1). Both the hypertension and the proteinuria of PE are caused by abnormally high amounts of antiangiogenic factors derived from the placenta. Fetal growth restriction (FGR), an additional feature of PE, is a consequence of reduced placental blood flow resulting from damage to the placental vasculature caused by antiangiogenic factors and/or to impaired development of the placenta. Endothelin-1 (EDN1) is the most powerful naturally occurring prohypertensive peptide, and antagonists of the endothelin type A receptor (EDNRA) greatly ameliorate the PE-like condition that develops in the kidneys of rodents with excess sFLT1 (2, 3). Unfortunately, these antagonists are teratogenic (4) and consequently unacceptable for use in treating PE.Nicotinamide is a potential nonteratogenic alternative because it relaxes blood vessels constricted with EDN1 (5) and because it has been extensively tested at high oral doses in men and (nonpregnant) women and found safe (6).
Results and DiscussionNicotinamide Ameliorates the Hypertension, Albuminuria, an...