Recombination is increasingly seen as an important means of shaping genetic diversity in RNA viruses. However, observed recombination frequencies vary widely among those viruses studied to date, with only sporadic occurrences reported in RNA viruses with negative-sense genomes. To determine the extent of homologous recombination in negative-sense RNA viruses, phylogenetic analyses of 79 gene sequence alignments from 35 negative-sense RNA viruses (a total of 2154 sequences) were carried out. Powerful evidence was found for recombination, in the form of incongruent phylogenetic trees between different gene regions, in only five sequences from Hantaan virus, Mumps virus and Newcastle disease virus. This is the first report of recombination in these viruses. More tentative evidence for recombination, where conflicting phylogenetic trees were observed (but were without strong bootstrap support) and/or where putative recombinant regions were very short, was found in three alignments from La Crosse virus and Puumala virus. Finally, patterns of sequence variation compatible with the action of recombination, but not definitive evidence for this process, were observed in a further ten viruses: Canine distemper virus, Crimean-Congo haemorrhagic fever virus, Influenza A virus, Influenza B virus, Influenza C virus, Lassa virus, Pirital virus, Rabies virus, Rift Valley Fever virus and Vesicular stomatitis virus. The possibility of recombination in these viruses should be investigated further. Overall, this study reveals that rates of homologous recombination in negative-sense RNA viruses are very much lower than those of mutation, with many viruses seemingly clonal on current data. Consequently, recombination rate is unlikely to be a trait that is set by natural selection to create advantageous or purge deleterious mutations.