Using real time optical transmission and imaging measurements in multiple shock wave compression experiments, water was shown to solidify on nanosecond time scales [D. H. Dolan and Y. M. Gupta, J. Chem. Phys. 121, 9050 (2004)]. Continuum modeling and wave profile measurements, presented here, provide a complementary approach to examine the freezing of shocked water. The water model consisted of thermodynamically consistent descriptions of liquid and solid (ice VII) water, relationships for phase coexistence, and a time-dependent transition description to simulate freezing dynamics. Continuum calculations using the water model demonstrate that, unlike single shock compression, multiple shock compression results in pressure-temperature conditions where the ice VIII phase is thermodynamically favored over the liquid phase. Wave profile measurements, using laser interferometry, were obtained with quartz and sapphire windows at a peak pressure of 5 GPa. For water confined between sapphire windows, numerical simulations corresponding to a purely liquid response are in excellent agreement with the measured wave profile. For water confined between quartz windows (to provide a nucleating surface), wave profile measurements demonstrate a pure liquid response for an incubation time of approximately 100 ns followed by a time-dependent transformation. Analysis of the wave profiles after the onset of transformation suggests that water changes from a metastable liquid to a denser phase, consistent with the formation of a high-pressure ice phase. Continuum analyses and simulations underscore the need for multiple time scales to model the freezing transition. Findings from the present continuum work are extremely consistent with optical results reported previously. These studies constitute the first comprehensive investigation reported for freezing of a liquid at very short time scales.