2016
DOI: 10.1016/j.ipm.2016.04.003
|View full text |Cite
|
Sign up to set email alerts
|

Measuring user influence on Twitter: A survey

Abstract: Abstract. Centrality is one of the most studied concepts in social network analysis. There is a huge literature regarding centrality measures, as ways to identify the most relevant users in a social network. The challenge is to find measures that can be computed efficiently, and that can be able to classify the users according to relevance criteria as close as possible to reality. We address this problem in the context of the Twitter network, an online social networking service with millions of users and an im… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
254
1
13

Year Published

2016
2016
2020
2020

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 373 publications
(268 citation statements)
references
References 123 publications
0
254
1
13
Order By: Relevance
“…Se debe tener en cuenta que la API de Twitter utilizada para la recolección sólo provee una proporción del total de publicaciones de Twitter existentes. Específicamente, esta proporción oscila entre el 1% y el 40% de las publicaciones generadas en tiempo real [23], [24], [25]. Con respecto a la recolección de alertas de Waze se empleó un filtro de delimitación geoespacial.…”
Section: Recolección Del Conjunto De Datosunclassified
“…Se debe tener en cuenta que la API de Twitter utilizada para la recolección sólo provee una proporción del total de publicaciones de Twitter existentes. Específicamente, esta proporción oscila entre el 1% y el 40% de las publicaciones generadas en tiempo real [23], [24], [25]. Con respecto a la recolección de alertas de Waze se empleó un filtro de delimitación geoespacial.…”
Section: Recolección Del Conjunto De Datosunclassified
“…Without the support from underlying data, these literatures provide very limited instruction to people how to predict mass incidents, how to prevent mass incidents, and how to manage mass incidents. From the perspective of research on message dissemination, social networks have emerged as a critical factor in the spread of information [11], marketing [12], innovation, and influence discovery. Data sets from social networks offer rich sources of evidences for studying the structure of social networks, the dynamics of individual, group behavior, global properties of information cascades [13], and identification of influential entities.…”
Section: Related Workmentioning
confidence: 99%
“…A very early definition for influential people is "individuals who were likely to influence other persons in their immediate environment" (Katz 1957). Social influence has either been studied to identify influential users (opinion leaders or authorities), topical or topic-based influential users (Riquelme 2015).…”
Section: Introductionmentioning
confidence: 99%