Background/Aims
There are increasing evidences for gastrointestinal motility disorder (GIMD) and gastric stress ulcer induced by noise stress. The present study was to investigate the reversed effect of melatonin on GIMD and gastric stress ulcer induced by noise stress and potential mechanism.
Methods
Noise stress was induced on rats, and melatonin (15 mg/kg) was administered to rats by intraperitoneal injection. Differences were assessed in gastric residual rate (GRR), small intestine propulsion rate (SPR), Guth injury score, cortisol, gastrointestinal hormones (calcitonin-gene-related peptide and motilin) and oxidative stress markers (superoxide dismutase and malondialde hyde) in blood plasma as well as gastric mucosa homogenate with or without melatonin. The pathological examination of gastric mucosa was also performed.
Results
The GRR and SPR were improved by noise stress compared with control (
P
< 0.05). The pathological examination and Guth injury score revealed gastric stress ulcer. Moreover, the levels of cortisol, motilin and malondialdehyde in blood plasma and malondialdehyde in gastric mucosa homogenate were increased by noise stress (
P
< 0.05). CGRP and superoxide dismutase activity in both of blood plasma and gastric mucosa homogenate were significantly decreased (
P
< 0.05). Furthermore, melatonin reversed changes in GRR, SPR, pathological examination, Guth injury score, cortisol, motilin, CGRP, superoxide dismutase activity and malondialdehyde (
P
< 0.05).
Conclusions
Melatonin is effective in reversing the GIMD and gastric stress ulcer induced by noise stress. The underlying mechanism may be involved in oxidative stress and gastrointestinal hormones.