Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleotide microarray analysis. Data analysis revealed that several gene categories relevant to peripheral olfactory perception are strongly regulated in a total of 1,444 differentially expressed genes during both time courses. Among these candidate genes, several CSP (chemosensory protein) genes and one takeout gene, LmigTO1, showed higher expression in gregarious and solitarious locusts, respectively, and displayed opposite expression trends during solitarization and gregarization. qRT-PCR experiments revealed that most CSP members and LmigTO1 exhibited antenna-rich expressions. RNA interference combined with olfactory behavioral experiments confirmed that the CSP gene family and one takeout gene, LmigTO1, are involved in the shift from repulsion to attraction between individuals during gregarization and in the reverse transition during solitarization. These findings suggest that the response to locust-emitted olfactory cues regulated by CSP and takeout genes is involved in the behavioral phase change in the migratory locust and provide a previously undescribed molecular mechanism linked to the formation of locust aggregations.
Eight accessory proteins have been identified in severe acute respiratory syndrome-associated coronavirus (SARS-CoV). They are believed to play roles in the viral life cycle and may contribute to the pathogenesis and virulence. ORF9b as one of these accessory proteins is located in subgenomic mRNA9 and encodes a 98 amino acid protein. However, whether 9b protein is a structural component of SARS-CoV particles remains unknown. In this study, we demonstrate that 9b protein is translated from bicistronic mRNA9 via leaky ribosome scanning and it is incorporated into both virus-like particles (VLPs) and purified SARS-CoV virions. Further analysis shows that sufficient incorporation of 9b protein into VLPs is dependent upon the co-expression of E and M proteins, but not upon the presence of either S or N protein. Our data indicate that 9b protein of SARS-CoV is another virion-associated accessory protein. This finding will lead to a better understanding of the properties of the SARS-CoV 9b protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.