The yeast plasma-membrane H؉ -ATPase contains nine cysteines, three in presumed transmembrane segments (Cys-148, Cys-312, and Cys-867) and the rest in hydrophilic regions thought to be exposed at the cytoplasmic surface (Cys-221, Cys-376, Cys-409, Cys-472, Cys-532, and Cys-569). To gather new functional and structural information, we have studied the yeast ATPase by cysteine mutagenesis. It proved possible to replace seven of the nine cysteines by alanine, one at a time, without any significant decrease in ATP hydrolysis or ATP-dependent proton pumping. In the remaining two cases (Cys-409 and Cys-472), there were small but reproducible effects; the results clearly indicated, however, that no single Cys is required for activity and that, if a disulfide bridge is formed in the yeast ATPase, it does not play an obligatory structural or functional role.Next, multiple mutants were constructed to ask how many Cys residues could be replaced simultaneously while leaving a fully functional enzyme. After substitution of all "membrane" Cys (Cys-148, Cys-312, and Cys-867) together with two non-conserved Cys located in hydrophilic regions (Cys-221 and Cys-569), there were no significant abnormalities in expression (87%) or activity (89% ATP hydrolysis/93% H ؉ pumping) of the mutant protein. Replacement of two additional cysteines (Cys-376 near the phosphorylation site and Cys-532, in or near the ATP-binding site) caused a drop in expression (to 54%), although the corrected hydrolytic and H ؉ pumping activities were still normal. When Cys-472 was also mutated, the corrected activity fell to 44% hydrolysis/47% pumping; finally, substitution of Cys-409 to give a "cysteine-free" ATPase led to a very poorly expressed and poorly active enzyme. Brief exposure of the "onecysteine" and "two-cysteine" ATPases to trypsin revealed a normal pattern of degradation, but there was a slight impairment in the ability of vanadate to protect against proteolysis. Thus, although single Cys replacements are tolerated well by the yeast ATPase, multiple replacements are progressively more harmful, suggesting that they cause small but additive perturbations of protein folding.