The Klebsiella sp. strain ATCC13883T capable of degrading carbofuran phenol (2,3-dihydro-2,2-dimethylbenzofuran-7-ol) has been separated from the soil by enrichment culture technique and immobilized in various, namely polyurethane foam (PUF), polyacrylamide, alginate, agar and alginate-bentonite clay-powdered activated charcoal (PAC). The degradation rates of 20 and 30 mM carbofuran phenol by free and immobilized cells in batch and semi-continuous shaken cultures were compared. The PUF-immobilized cells achieved higher degradation rates in a shorter time than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF-and alginate-bentonite clay-PAC-immobilized cells could be reused for more than 36 cycles, polyacrylamideentrapped cells for 20 cycles and alginate-bentonite-PAC 28 cycles, without losing any degradation capacity and showed better tolerance to pH, temperature and concentration changes than free cells. These results showed that cells immobilized in modified alginate-bentonite-PAC immobilizers tolerated and completely degraded carbofuran phenol at initial concentrations of 20 and 30 mM and also higher. Such a bacterial strain could be used for bioremediation of environments contaminated with phenolic compounds.