Background: Asthma-COPD overlap (ACO) refers to a group of poorly studied and characterised patients reporting with disease presentations of both asthma and COPD, thereby making both diagnosis and treatment challenging for the clinicians. They exhibit a higher burden in terms of both mortality and morbidity in comparison to patients with only asthma or COPD. The pathophysiology of the disease and its existence as a unique disease entity remains unclear. The present study aims to determine whether ACO has a distinct metabolic and immunological mediator profile in comparison to asthma and COPD. Methods: Global metabolomic profiling using two different groups of patients [discovery (D) and validation (V)] were conducted. Serum samples obtained from moderate and severe asthma [n = 34(D); n = 32(V)], moderate and severe COPD [n = 30(D); 32(V)], ACO patients [n = 35(D); 40(V)] and healthy controls [n = 33(D)] were characterized using gas chromatography mass spectrometry (GC-MS). Multiplexed analysis of 25 immunological markers (IFN-γ (interferon gamma), TNF-α (tumor necrosis factor alpha), IL-12p70 (interleukin 12p70), IL-2, IL-4, IL-5, IL-13, IL-10, IL-1α, IL-1β, TGF-β (transforming growth factor), IL-6, IL-17E, IL-21, IL-23, eotaxin, GM-CSF (granulocyte macrophagecolony stimulating factor), IFN-α (interferon alpha), IL-18, NGAL (neutrophil gelatinase-associated lipocalin), periostin, TSLP (thymic stromal lymphopoietin), MCP-1 (monocyte chemoattractant protein-1), YKL-40 (chitinase 3 like 1) and IL-8) was also performed in the discovery cohort. Results: Eleven metabolites [serine, threonine, ethanolamine, glucose, cholesterol, 2-palmitoylglycerol, stearic acid, lactic acid, linoleic acid, D-mannose and succinic acid] were found to be significantly altered in ACO as compared with asthma and COPD. The levels and expression trends were successfully validated in a fresh cohort of subjects. Thirteen immunological mediators including TNFα, IL-1β, IL-17E, GM-CSF, IL-18, NGAL, IL-5, IL-10, MCP-1, YKL-40, IFNγ, IL-6 and TGF-β showed distinct expression patterns in ACO. These markers and metabolites exhibited significant correlation with each other and also with lung function parameters.