The problem of taking into account changes in the user’s behavior of the recommendation system whenconstructing explanations for recommendations is considered. This problem occurs as a result of cyclical changes in userrequirements. Its solution is associated with the construction of an explanation comparing the alternative choices of theuser of the recommendation system. The developed models of temporal patterns consist of a set of temporal relationshipsbetween the events of users’ choice of goods and services. The first pattern contains an alternative in the form of sequential selection in time of several objects or the selection of only a pair - the first and the last object. The second pattern,sequential-alternative choice, consists of a sequence of choices over time, which ends with the first pattern. The proposedapproach to the formation of patterns is based on the construction of data sets containing temporal dependencies betweena group of user choices for a given level of time detail. The temporal dataset is used to construct a temporal graph of therecommender system user selection process. The latter includes a set of temporal patterns with an indication of the timeof their beginning and end, which makes it possible to determine the duration of the implementation of these patterns.On the basis of the patterns, subsets of temporal relationships are formed to build explanations for the recommendedlist of goods and services. Experimental verification of the developed approach using the “Online Retail” sales data sethas shown the possibility of identifying temporal patterns even on short initial samples.