The problem of shilling attacks detecting in e-commerce systems is considered. The purpose of such attacks is to artificially change the rating of individual goods or services by users in order to increase their sales. A method for detecting shilling attacks based on a comparison of weighted temporal rules for the processes of selecting objects with explicit and implicit feedback from users is proposed. Implicit dependencies are specified through the purchase of goods and services. Explicit feedback is formed through the ratings of these products. The temporal rules are used to describe hidden relationships between the choices of user groups at two consecutive time intervals. The method includes the construction of temporal rules for explicit and implicit feedback, their comparison, as well as the formation of an ordered subset of temporal rules that capture potential shilling attacks. The method imposes restrictions on the input data on sales and ratings, which must be ordered by time or have timestamps. This method can be used in combination with other approaches to detecting shilling attacks. Integration of approaches allows to refine and supplement the existing attack patterns, taking into account the latest changes in user priorities.
The problem of identifying shilling attacks, which are aimed at forming false ratings of objects in the recommender system, is considered. The purpose of such attacks is to include in the recommended list of items the goods specified by the attacking user. The recommendations obtained as a result of the attack will not correspond to customers' real preferences, which can lead to distrust of the recommender system and a drop in sales. The existing methods for detecting shilling attacks use explicit feedback from the user and are focused primarily on building patterns that describe the key characteristics of the attack. However, such patterns only partially take into account the dynamics of user interests. A method for detecting shilling attacks using implicit feedback is proposed by comparing the temporal description of user selection processes and ratings. Models of such processes are formed using a set of weighted temporal rules that define the relationship in time between the moments when users select a given object. The method uses time-ordered input data. The method includes the stages of forming sets of weighted temporal rules for describing sales processes and creating ratings, calculating a set of ratings for these processes, and forming attack indicators based on a comparison of the ratings obtained. The resulting signs make it possible to distinguish between nuke and push attacks. The method is designed to identify discrepancies in the dynamics of purchases and ratings, even in the absence of rating values at certain time intervals. The technique makes it possible to identify an approach to masking an attack based on a comparison of the rating values and the received attack indicators. When applied iteratively, the method allows to refine the list of profiles of potential attackers. The technique can be used in conjunction with pattern-oriented approaches to identifying shilling attacks
The main goal of the article is to provide a comparative legal analysis of the historical characteristics and the current state of state protection of some foreign states. The author considers the mechanisms and the results of ensuring the security of heads of states. The main conclusion: despite the fact that each of the State Security Services of the considered states has been developed in different ways and at different speeds, most of them are currently very similar in their internal structure and functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.