2020
DOI: 10.3103/s0967091220020114
|View full text |Cite
|
Sign up to set email alerts
|

Method for Determining Particle Growth Dynamics in a Two-Component Alloy

Abstract: Южно-Уральский государственный университет (НИУ) (454080, Россия, Челябинск, пр. Ленина, 76) Аннотация. Рассмотрена проблема изменения размеров частицы новой фазы в процессе ее роста в двухкомпонентном сплаве. Частица формируется из продуктов химических реакций, проходящих на границе раздела фаз. Обобщенная математическая модель роста частицы включает уравнения диффузии для каждого из компонентов фазы и массопереноса в граничном слое, а также уравнение, характеризующее изменение размеров растущей частицы. Пред… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
7
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(7 citation statements)
references
References 14 publications
0
7
0
Order By: Relevance
“…This paper discusses the inverse problem of numerical recovering of the initial condition for a nonlinear singularly perturbed reaction-diffusion-advection equation with data on the position of a reaction front, measured in an experiment with a delay relative to the initial time. Problems for equations of this type arise in gas dynamics [1], chemical kinetics [2][3][4][5][6], nonlinear wave theory [7], biophysics [8][9][10][11][12], medicine [13][14][15][16], ecology [17][18][19] and other fields of science [20]. A feature of this type of problem is the presence of multiscale processes.…”
Section: Introductionmentioning
confidence: 99%
“…This paper discusses the inverse problem of numerical recovering of the initial condition for a nonlinear singularly perturbed reaction-diffusion-advection equation with data on the position of a reaction front, measured in an experiment with a delay relative to the initial time. Problems for equations of this type arise in gas dynamics [1], chemical kinetics [2][3][4][5][6], nonlinear wave theory [7], biophysics [8][9][10][11][12], medicine [13][14][15][16], ecology [17][18][19] and other fields of science [20]. A feature of this type of problem is the presence of multiscale processes.…”
Section: Introductionmentioning
confidence: 99%
“…Problems for nonlinear singularly perturbed reaction-diffusion-advection equations arise in gas dynamics [1], combustion theory [2], chemical kinetics [3][4][5][6][7][8][9][10], nonlinear wave theory [11], biophysics [12][13][14][15][16], medicine [17][18][19][20], ecology [21][22][23][24][25], finance [26] and other fields of science [27]. A specific feature of problems of this type is the presence of processes of different scales.…”
Section: Introductionmentioning
confidence: 99%
“…Nonlinear singularly perturbed reaction-diffusion-advection equations arise when solving the problems in gas dynamics [1], combustion theory [2], chemical kinetics [3][4][5][6][7][8][9], nonlinear wave theory [10], biophysics [11][12][13][14][15], medicine [16][17][18][19], ecology [20][21][22], finance [23], and other areas of science [24]. Inverse problems for the equation of this type often arise when solving various applied problems and consist of recovering some coefficient in the equation.…”
Section: Introductionmentioning
confidence: 99%
“…The solution to the Cauchy problem (6) does not exist in the entire domain Ũ, but only in some subdomain ϕ (−) f 1 (t), t , ϕ * ∈ Ũ, where ϕ (−) f 1 (t), t < ϕ * < ϕ (+) f 1 (t), t , including the values v ũ) for ũ > ϕ * , it will not exist (see Figure 2b).…”
mentioning
confidence: 99%