Abstract-In this paper, we present a microfabricated fourthorder sub-THz WR-3.4 bandpass waveguide filter based on TM110 dual-mode circular-shaped cavity resonators. The filter operates at the center frequency of 270 GHz with fractional bandwidth of 1.85% and two transmission zeros are introduced in the upper and in the lower stopband using a virtual negative coupling. The microchip filter is significantly more compact than any previous dual-mode designs at comparable frequencies, occupying less than 1.5 mm 2 . Furthermore, in contrast to any previous micromachined filter work, due to its axially arranged interfaces it can be directly inserted between two standard WR-3.4 rectangular-waveguide flanges, which vastly improves system integration as compared to previous micromachined filters; in particular no custom-made split-block design is required. The cavities are etched in the handle layer of a silicon-on-insulator (SOI) wafer, and coupling is realized through rectangular slots fabricated in the SOI device layer. Couplings of the degenerate modes in one cavity are facilitated by means of small perturbations in the circular cavity shapes. The measured average return loss in the passband is -18 dB and worst-case return loss is -15 dB, and an insertion loss of only 1.5 dB was measured. The excellent agreement between measured and simulated data is facilitated by fabrication accuracy, design robustness and micromachined self-alignment geometries.