Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.