A multi-layered composite material composed of alternating SUS301 and SUS420J2 steels, prepared by hot-rolling bonding, shows a superior strength and ductility balance than the components. Few researches have been addressed on texture features of structural multi-layered materials during cold-rolling. In the present work, cold-rolling with three reductions (20%, 40% and 65%) in thickness was conducted on both the two monolithic steels (SUS301 and SUS420J2) and the multi-layered material consisting of SUS301 and SUS420J2 components. Texture and microstructure development during the cold-rolling deformation in both the monolithic steels and multi-layered material were investigated by using EBSD technique. It was found that austenite phase in SUS301 component of the multi-layered material showed weaker h110i==ND texture as compared to the monolithic SUS301 steel although the similar texture characteristics appeared in both conditions. On the other hand, the martensite phase in SUS420J2 component of the multi-layered material showed stronger f112gh110i texture components than the h111i==ND and h100i==ND texture components that were dominant in the monolithic SUS420J2 steel. It is considered that the constraint condition and shear stress at component layer interfaces are significant for the formation of Brass component observed as the final stable orientation of austenite phase of the SUS301 steel in the multi-layered samples, and the formation of the f112gh110i texture of martensite phase of the SUS420J2 steel in the multi-layered samples during the cold-rolling deformation.