Modelling and simulation of complex engineering systems are often relieved by a modular approach in which the global system is decomposed into subsystems. Advantages arise from independent and parallel modelling of subsystems over easy exchange of the resulting modules to the use of different software for each module. However, the modular simulation of the global system by coupling of simulators may result in an unstable integration, if an algebraic loop exists between the subsystems. This numerical phenomenon is analyzed and two methods of simulator coupling which guarantee stability for general systems including algebraic loops are introduced. Numerical results of the modular simulation of a multibody system are presented.