Glioblastoma (GBM) is the most lethal primary brain tumor and has a complex molecular profile. Hypoxia plays a critical role during tumor progression and in the tumor microenvironment (TME). Exosomes released by tumor cells contain informative nucleic acids, proteins, and lipids involved in the interaction between cancer and stromal cells, thus leading to TME remodeling. Accumulating evidence indicates that exosomes play a pivotal role in cell-to-cell communication. However, the mechanism by which hypoxia affects tumor angiogenesis via exosomes derived from tumor cells remains largely unknown. In our study, we found that, compared with the parental cells under normoxic conditions, the GBM cells produced more exosomes, and miR-182-5p was significantly upregulated in the exosomes from GBM cells under hypoxic conditions. Exosomal miR-182-5p directly suppressed its targets Kruppel-like factor 2 and 4, leading to the accumulation of VEGFR, thus promoting tumor angiogenesis. Furthermore, exosome-mediated miR-182-5p also inhibited tight junction-related proteins (such as ZO-1, occludin, and claudin-5), thus enhancing vascular permeability and tumor transendothelial migration. Knockdown of miR-182-5p reduced angiogenesis and tumor proliferation. Interestingly, we found elevated levels circulating miR-182-5p in patient blood serum and cerebrospinal fluid samples, and its expression level was inversely related to the prognosis. Implications: Overall, our data clarify the diagnostic and prognostic value of tumor-derived exosome-mediated miR-182-5p and reveal the distinctive cross-talk between tumor cells and human umbilical vein endothelial cells mediated by tumorderived exosomes that modulate tumor vasculature.