• Background:
Hsa-miR-495 (miR-495) has been extensively investigated in cancer initiation and progression. On the other hand, our bioinformatics analysis suggested that miR-495 exert its effects through targeting of TGFβ signaling components.
• Methods & Results:
In order to investigate such effect, miR-495 precursor was overexpressed in HEK293T and HCT116 cells, that it was followed by downregulation of TGFβR1, TGFβR2, SMAD4 and BUB1 putative target genes, detected by RT-qPCR. Also, luciferase assay supported direct interaction of miR-495 with 3’UTR sequences of TGFβR1, TGFβR2, SMAD4 and BUB1 genes. Furthermore, a negative correlation of expression between miR-495-3p and these target genes was deduced in a set of colorectal and breast cancer cell lines. Then, flow cytometry analysis showed that the overexpression of miR-495 in HCT116 and HEK293T resulted in an arrest at the G1 phase. Consistently, western blotting analysis showed a significant reduction of the Cyclin D1 protein in the cells overexpressing miR-495, pointing to downregulation of TGFβ signaling pathway and cell cycle arrest. Finally, microarray data analysis showed that miR-495-3p is significantly downregulated in colorectal tumors, compared to the normal pairs.
• Conclusions:
Overall, results of current study introduced miR-495-3p as a cell cycle progression suppressor, which negatively regulates TGFβR1, TGFβR2, SMAD4 and BUB1 genes. This finding suggests miR-495-3p as a tumor suppressor candidate for further evaluation.