BACKGROUND:The frequency of measurements of vitamin D in the human population has significantly increased over the last decade because vitamin D has now been linked to many diseases, in addition to its established role in bone health. Usually, serum 25-hydroxyvitamin D concentrations are measured to assess the vitamin D status of individuals. Unfortunately, many studies investigating links between vitamin D and disease also use only this single metabolite. Intricate correlations with other vitamin D metabolites or dynamic effects of downstream metabolites may therefore be overlooked. Fortunately, powerful LC-MS/MS approaches have recently become available that can simultaneously quantify the concentrations of multiple vitamin D metabolites. These approaches are challenging, however, because of inherent instrumental problems with detection of vitamin D compounds and the low concentrations of the metabolites in biological fluids.CONTENT: This review summarizes recent mass spectrometry assays for the quantitative measurement of multiple vitamin D metabolites and their application in clinical research, with a particular focus on the lowabundance downstream metabolic species generated after the initial hydroxylation to 25-hydroxyvitamin D.