It was shown in this proof-of-concept study that DMS-MS has the potential to significantly decrease systematic errors, and thus improve accuracy of vitamin D measurements using LC/MS/MS.
Acetaminophen (APAP)-induced hepatotoxicity is the most common cause of acute liver failure in the Western world. APAP is bioactivated to
N
-acetyl
p
-benzoquinone imine (NAPQI), a reactive metabolite, which can subsequently covalently bind to glutathione and protein thiols. In this study, we have used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to characterize NAPQI binding to human glutathione
S
-transferases (GSTs)
in vitro
. GSTs play a crucial role in the detoxification of reactive metabolites and therefore are interesting target proteins to study in the context of APAP covalent binding. Recombinantly-expressed and purified GSTs were used to assess NAPQI binding
in vitro
. APAP biotransformation to NAPQI was achieved using rat liver microsomes or human cytochrome P450 Supersomes in the presence of GSTA1, M1, M2, or P1. Resulting adducts were analyzed using bottom-up proteomics, with or without LC fractionation prior to LC-MS/MS analysis on a quadrupole-time-of-flight instrument with data-dependent acquisition (DDA). Targeted methods using multiple reaction monitoring (MRM) on a triple quadrupole platform were also developed by quantitatively labeling all available cysteine residues with a labeling reagent yielding isomerically-modified peptides following enzymatic digestion. Seven modified cysteine sites were confirmed, including Cys112 in GSTA1, Cys78 in GSTM1, Cys115 and 174 in GSTM2, as well as Cys15, 48, and 170 in GSTP1. Most modified peptides could be detected using both untargeted (DDA) and targeted (MRM) approaches, however the latter yielded better detection sensitivity with higher signal-to-noise and two sites were uniquely found by MRM.
Abstract. We describe a systematic comparison of high and low resolution LC-MS/ MS assays for quantification of 25-hydroxyvitamin D 3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupolequadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
This short application note describes a simple and automated assay for determination of 25-hydroxyvitamin D (25(OH)D) levels in very small volumes of human serum. It utilizes commercial 96-well micro-extraction plates with commercial 25(OH)D isotope calibration and quality control kits. Separation was achieved using a pentafluorophenyl liquid chromatography column followed by multiple reaction monitoring-based quantification on an electrospray triple quadrupole mass spectrometer. Emphasis was placed on providing a simple assay that can be rapidly established in non-specialized laboratories within days, without the need for laborious and time consuming sample preparation steps, advanced calibration or data acquisition routines. The analytical figures of merit obtained from this assay compared well to established assays. To demonstrate the applicability, the assay was applied to analysis of serum samples from patients with chronic liver diseases and compared to results from a routine clinical immunoassay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.