It is challenging to enable fast channel switching and packet-loss repair in low-delay live video distribution without negatively influencing the steadystate viewing performance. For example, regularly breaking the inter-frame dependency by introducing intra-predicted keyframes enables random access, but is costly in terms of rate-distortion performance. For this reason, the keyframe-injection method minimizes the impact by sending a compression-efficient normal video stream to all end-users. As accompaniment, a companion stream that solely consists of keyframes is sporadically used for only those users that switch channels or experience packet loss. This paper describes the requirements to implement keyframe injection in three video coding standard generations (H.264/AVC, H.265/HEVC, and H.266/VVC). We evaluated the impact that keyframe injection has on the quality of the video in terms of a decrease in VMAF, PSNR and SSIM. We demonstrate that the quality reduction caused by keyframe insertion is generally low, meaning that keyframe injection typically is imperceptible. However, drift-error artifacts become perceptible over time for rare outliers. Moreover, we pinpointed the cause of this worst-case artifact type to be halfpel interpolation.