This paper focuses on the recognition of Activities of Daily Living (ADL) applying pattern recognition techniques to the data acquired by the accelerometer available in the mobile devices. The recognition of ADL is composed by several stages, including data acquisition, data processing, and artificial intelligence methods. The artificial intelligence methods used are related to pattern recognition, and this study focuses on the use of Artificial Neural Networks (ANN). The data processing includes data cleaning, and the feature extraction techniques to define the inputs for the ANN. Due to the low processing power and memory of the mobile devices, they should be mainly used to acquire the data, applying an ANN previously trained for the identification of the ADL. The main purpose of this paper is to present a new method implemented with ANN for the identification of a defined set of ADL with a reliable accuracy. This paper also presents a comparison of different types of ANN in order to choose the type for the implementation of the final method. Results of this research probes that the best accuracies are achieved with Deep Learning techniques with an accuracy higher than 80%. Following the previous research studies [4][5][6], the recognition of the ADL is composed by several steps, such as the data acquisition, the data processing, composed by data cleaning, data imputation, and feature extraction, the data fusion, and the artificial intelligence methods for the concrete identification of the ADL. However, this study only uses the accelerometer sensor, removing some steps of the proposed architecture. Based on the assumption that the sensor was always acquiring the data, the final steps used are the data acquisition, the data cleaning, and the application of the artificial intelligence methods.During the last years, the recognition of ADL has been studies by several authors [7][8][9][10][11][12], verifying that the Artificial Neural Networks (ANN) are widely used. This paper proposes the creation of a method for the recognition of ADL using accelerometer, comparing three types of ANN, such as Multilayer Perception (MLP) with Backpropagation, Feedforward neural network with Backpropagation, and Deep Learning, in order to verify the method that achieves the best accuracy in the recognition of running, walking, going upstairs, going downstairs, and standing. The datasets are composed with raw accelerometer data acquired by individual with ages ranged between 16 and 60 years old and different lifestyles, with a mobile device in the pocket. For the implementation of these types of ANN are used several datasets with different sets of features, identifying the best features to increase the accuracy of the recognition, and three Java libraries are used for the implementation of the different methods, such as Neuroph [13], Encog [14], and DeepLearning4j [15], achieving the best accuracy with Deep Learning methods.The remaining sections of this paper are organized as follows: Section 2 presents a brief literature review re...