1991
DOI: 10.1016/0019-1035(91)90058-2
|View full text |Cite
|
Sign up to set email alerts
|

Modeling of the thermal behavior and of the chemical differentiation of cometary nuclei

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
78
0

Year Published

1997
1997
2013
2013

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 116 publications
(78 citation statements)
references
References 17 publications
0
78
0
Order By: Relevance
“…Espinasse et al 1991;Shoshany et al 2002;Guilbert-Lepoutre et al 2011). Based on a fractal porous model of cometary ice, Shoshany et al (2002) propose an analytic expression for the effective thermal conductivity as a function of porosity p (defined as the fraction of the volume occupied by voids), in the form of a temperature-independent correction factor Φ = (1 − p/p c ) 4.1p+0.22 , where p c = 0.7 the porosity at percolation threshold.…”
Section: Thermal Inertia and Dependence With Heliocentric Distancementioning
confidence: 99%
“…Espinasse et al 1991;Shoshany et al 2002;Guilbert-Lepoutre et al 2011). Based on a fractal porous model of cometary ice, Shoshany et al (2002) propose an analytic expression for the effective thermal conductivity as a function of porosity p (defined as the fraction of the volume occupied by voids), in the form of a temperature-independent correction factor Φ = (1 − p/p c ) 4.1p+0.22 , where p c = 0.7 the porosity at percolation threshold.…”
Section: Thermal Inertia and Dependence With Heliocentric Distancementioning
confidence: 99%
“…We thus adopted the approach developed by Espinasse et al (1989Espinasse et al ( , 1991 rather than more up-to-date concepts which have been developed since that time (see for example Tancredi et al 1994;Enzian et al 1997).…”
Section: General Assumptionsmentioning
confidence: 99%
“…Hence, in that case, the gas is close to saturation and so automatically compensates for the local loss or gain of gas due to gas diffusion towards the surface. We can then take a sublimation/recondensation rate equal to (Espinasse et al 1991): (2) where δt is the time step of our simulation, and Π the porosity.…”
Section: Physical Processesmentioning
confidence: 99%
“…H x is the molar latent heat of sublimation of ice x (J mol −1 ) and Q cr x (mol m −3 s −1 ) and Y cr are the rate of moles of gas x and the power per unit volume released during the crystallization process of amorphous water ice respectively (Espinasse et al 1991;Orosei et al 1999). Q x is the rate of volatile molecule x (mol m −3 s −1 ) that sublimates/condenses in the pores of the matrix, and is given by the gas diffusion equation that describes the diffusion of gas through the porous matrix for each molecule x:…”
Section: Nucleus Modelmentioning
confidence: 99%