DOI: 10.11606/d.11.2018.tde-15052018-104958
|View full text |Cite
|
Sign up to set email alerts
|

Modelos de simulação da cultura do milho - uso na determinação das quebras de produtividade (<em>Yield Gaps</em>) e na previsão de safra da cultura no Brasil

Abstract: Milho 2. Modelos de simulação de cultura 3. Multi-modelos 4. Previsão de safra 5. Yield gap I. Título AGRADECIMENTOS Em meio a essa mistura de euforia e alivio, digna de um ciclista que acaba de completar o último dia de prova no Tour de France, escrevo aqui minhas palavras de gratidão a todo esse período de estudo e desenvolvimento do presente projeto de mestrado. Dentre todos os tropeços, dificuldades e vacilos, os frutos colhidos são de aprendizado, amadurecimento pessoal e novas amizades. Não posso deixar … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

3
3
0
1

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(7 citation statements)
references
References 42 publications
3
3
0
1
Order By: Relevance
“…There was superiority in the performance of strategies that used fewer average climate variables in the simulations, and strategy S1 (c = 0.92, MAE = 204 kg ha -1 , RMSE = 58 kg ha -1 ) was the best, followed by strategy S2 (c = 0.86, MAE = 267 kg ha -1 , RMSE = 76 kg ha -1 ). These results are similar to those found by Duarte (2018), who used a historical series of meteorological data from 1980 to 2010 and average data for 30 years for each day and tested harvest forecast strategies for first and second maize harvests with average data at 5, 25, 45, 65, and 85 days from harvest. The best performing strategy was 5 days, and the worst was 85 days.…”
Section: Resultssupporting
confidence: 86%
See 3 more Smart Citations
“…There was superiority in the performance of strategies that used fewer average climate variables in the simulations, and strategy S1 (c = 0.92, MAE = 204 kg ha -1 , RMSE = 58 kg ha -1 ) was the best, followed by strategy S2 (c = 0.86, MAE = 267 kg ha -1 , RMSE = 76 kg ha -1 ). These results are similar to those found by Duarte (2018), who used a historical series of meteorological data from 1980 to 2010 and average data for 30 years for each day and tested harvest forecast strategies for first and second maize harvests with average data at 5, 25, 45, 65, and 85 days from harvest. The best performing strategy was 5 days, and the worst was 85 days.…”
Section: Resultssupporting
confidence: 86%
“…The worst productivity performance was observed for strategies S1 and S2. Strategies S4, S5, S6, and S7 showed a strong flattening of variability and amplitude due to the use of a high amount of average meteorological data, as also observed by Duarte (2018). These results differ from those of Martins (2007), who used the ETA climate forecast model combined with climate data from the years of their simulations and suggested that the maize yield forecast can be satisfactorily made between 45 and 60 days before harvest.…”
Section: Resultsmentioning
confidence: 55%
See 2 more Smart Citations
“…A abordagem que tem sido recomendada em resposta a essa questão é o uso de modelos em conjunto ("ensemble"), que considera a média entre os modelos, tendo como objetivo minimizar as incertezas associadas a cada um dos modelos quando estes são empregados individualmente (ASSENG et al, 2013;BASSU et al, 2014;GRASSINI et al, 2015, BATTISTI; SENTELHAS; BOOTE, 2017) e a avaliar a sensibilidade dos modelos à variações do clima (MARIN et al, 2015;LI et al, 2015). O uso do "ensemble" tem se mostrado relevante na estimativa da produtividade de diferentes culturas (ASSENG et al, 2013;MARTRE et al, 2014;DUARTE, 2018) e na compreensão das respostas dos modelos às condições de clima (BATTISTI; SENTELHAS; BOOTE, 2017; BENDER, 2017).…”
Section: Introductionunclassified