Peptide-based self-assembled
monolayers (SAMs) are well known to
be crucial for biocompatible surface formation on inorganic substrates
applied for implants, biosensors, or tissue engineering. Moreover,
recently these bioinspired nanostructures are also considered
particularly interesting for molecular electronics applications due
to their surprisingly high conductance and thickness-independent capacitance,
which make them a very promising element of organic field-effect transistors
(OFETs). Our structural analysis conducted for a series of prototypic
homooligopeptides based on glycine (Gly) with cysteine (Cys) as a
substrate bonding group chemisorbed on Au and Ag metal substrates
(Gly
n
Cys/Au(Ag),
n
=
1–9) exhibits the formation by these monolayers secondary structure
close to β-sheet conformation with pronounced
odd–even
structural effect strongly affecting packing density and conformation
of molecules in the monolayer, which depend on the length of molecules
and the type of metal substrate. Our experiments indicate that the
origin of these structural effects is related to the either cooperative
or competitive relationship between the type of secondary structure
formed by these molecules and the directional character of their chemical
bonding to the metal substrate. The current analysis opens up the
opportunity for the rational design of these biologically inspired
nanostructures, which is crucial both for mentioned biological and
electronic applications.