2006
DOI: 10.1137/050630416
|View full text |Cite
|
Sign up to set email alerts
|

Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES

Abstract: Abstract. The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] for solving linear systems Ax = b is implemented as a sequence of least squares problems involving Krylov subspaces of increasing dimensions. The most usual implementation is modified Gram-Schmidt GMRES (MGS-GMRES). Here we show that MGS-GMRES is backward stable. The result depends on a more general result on the backward stability of a variant of the MGS algorithm applied … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

2
116
0
2

Year Published

2009
2009
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 100 publications
(120 citation statements)
references
References 22 publications
2
116
0
2
Order By: Relevance
“…For any backward stable solver (such as LU factorization with appropriate pivoting for stability, or GMRES with Householder orthogonalization [11] or modified Gram-Schmidt orthogonalization [28]) we know that the backward error r i 2 /( A 2 x i 2 ) of the computed solution x i to Ax = b will be small, yet the forward error may be large. For the refinement, the initial backward error will be small and the same will be true for each iterate x i , as refinement does not degrade the backward error.…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…For any backward stable solver (such as LU factorization with appropriate pivoting for stability, or GMRES with Householder orthogonalization [11] or modified Gram-Schmidt orthogonalization [28]) we know that the backward error r i 2 /( A 2 x i 2 ) of the computed solution x i to Ax = b will be small, yet the forward error may be large. For the refinement, the initial backward error will be small and the same will be true for each iterate x i , as refinement does not degrade the backward error.…”
mentioning
confidence: 99%
“…Then we use the analysis of [28] to show that our GMRES variant provides a backward stable solution to Ad i = s i . These three results allow us to conclude that Ad i = s i can be solved with some degree of relative accuracy; that is, (2.1) is satisfied.…”
mentioning
confidence: 99%
“…Há dois resultados em [91] e [96] onde são caracterizadas a estabilidade em relação ao erro inverso das implementações do GMRES usando as reflexões de Householder e o método modificado de GramSchmidt no processo de Arnoldi. Esses resultados asseguram que pequenas modificações nos dados tratados não irão acarretar grande problemas à solução do problema, uma vez que se estará resolvendo exatamente um problema próximo.…”
Section: 2)unclassified
“…Como falamos anteriormente, para matrizes não simétricas o GMRES [102] é frequentemente escolhido devido a sua robustez. Como apontamos na seção 2.3, há trabalhos sobre o tema em [91] e [96] onde são caracterizadas a estabilidade em relação ao erro inverso das implementações do GMRES, usando as reflexões de Householder e o método modificado de Gram-Schmidt no processo de Arnoldi. Uma outra razão da popularidade do método é que a norma euclidiana do resíduo não cresce (em geral decresce) durante o avanço das iterações.…”
Section: Estudo De Caso: Gmres Flexível Com Recomeço Deflacionadounclassified
“…Notice that the given y solves a problem within the range of uncertainty in the data (2.13) if and only if η 2,F ≤ 1, so that if η 2,F ≤ 1 we can conclude that the given y is an acceptable solution to the compatible system Ax = b, and this can be used as a stopping criterion for iterative methods such as MGS-GMRES (see [15]). …”
Section: Minimal Backward Errors and Acceptablementioning
confidence: 99%