Based on projective synchronization and combination synchronization model, a type of combination-combination projective synchronization is realized via nonsingular sliding mode control technique for multiple different chaotic systems. Concretely, on the basic of the adaptive laws and stability theory, the corresponding sliding mode control surfaces and controllers are designed to achieve the combination-combination projective synchronization between the combination of two chaotic systems as drive system and the combination of multiple chaotic systems as response system with disturbances. Some criteria and corollaries are derived for combination-combination projective synchronization of the multiple different chaotic systems. Finally, the numerical simulation results are presented to demonstrate the effectiveness and correctness of the synchronization scheme.