The aim of this study was to encapsulate, L-ascorbic acid, in biopolymers in order to obtain (i) enhancing its encapsulation effi ciency (ii) increasing drug release ratio using different pH mediums. Microparticles based on polycaprolactone, polyethylene glycol and casein are prepared by spray drying technique. Microparticles are in vitro characterized in terms of yield of production, particle size, morphology, encapsulation efficiency, and drug release. In this manner, the importance of the study is producing of a stable and effective drug encapsulation system by PCL-PEG-CS polymer mixture by spray dryer. We achieved minimum 27.540±0.656 μm particle size with 0.512 m 2 /g surface area, 84.05% maximum drug loading, and 68.92% drug release ratio at pH 9.6. Release profi les are fi tted to previously developed kinetic models to differentiate possible release mechanisms. The Korsmeyer-Peppas model is the best described each release scenario, and the drug release is governed by non-Fickian diffusion at pH 9.6. Our study proposed as an alternative or adjuvants for controlling release of L-ascorbic acid.