Pneumococcal polysaccharide-based vaccines are effective in preventing pneumococcus infection; however, some drawbacks preclude their widespread use in developing and undeveloped countries. Here, we evaluated the protective effects of ATP-dependent caseinolytic protease (ClpP), pneumolysin mutant (⌬A146 Ply), putative lipoate-protein ligase (Lpl), or combinations thereof against pneumococcal infections in mice. Vaccinated mice were intraperitoneally and/or intranasally challenged with different pneumococcal strains. In intraperitoneal challenge models with pneumococcal strain D39 (serotype 2), the most striking protection was obtained with the combination of the three antigens. Similarly, with the intranasal challenge models, (i) additive clearance of bacteria in lungs was observed for the combination of the three antigens and (ii) a combination vaccine conferred complete protection against intranasal infections of three of the four most common pneumococcal strains (serotypes 14, 19F, and 23F) and 80% protection for pneumococcal strain 6B. Even so, immunity to this combination could confer protection against pneumococcal infection with a mixture of four serotypes. Our results showed that the combination vaccine was as effective as the currently used vaccines (PCV7 and PPV23). These results indicate that system immunization with the combination of pneumococcal antigens could provide an additive and broad protection against Streptococcus pneumoniae in pneumonia and sepsis infection models.Streptococcus pneumoniae (pneumococcus) commonly colonizes the upper respiratory tract asymptomatically and was estimated, in 2005, to kill 1.6 million people every year, most of whom were children aged Ͻ5 years in developing and undeveloped countries (36). As far as we know, 91 capsular polysaccharide serotypes have been identified in S. pneumoniae (33); among these, serotypes 23F, 19F, 14, and 6B are the four most epidemic strains worldwide (2,5,15,17,25,26,29). Moreover, and of recent concern, the widespread use of antibiotics, leading to the development of antibiotic resistance or multidrug resistance against S. pneumoniae, is increasing (9,12,26).Heptavalent protein-polysaccharide conjugate vaccine (PCV7) and 23-valent pneumococcal polysaccharide vaccine (PPV23) are the two vaccines currently being used against S. pneumoniae. Both of these vaccines are polysaccharide-based formulations and effective in preventing invasive pneumococcal infections; however, some drawbacks, such as high cost, the limited polysaccharides covered, poor immunogenicity in the very young and the very old, and serotype replacement (22,24,26,36), limit their wider use.Alternatively, in an attempt to overcome the disadvantages of polysaccharide-based vaccines, a number of studies have been focusing on the screening and evaluation of proteinbased vaccine candidates. Pneumococcal protein vaccine candidates, such as nontoxic pneumolysin derivates, pneumococcal surface proteins (PspA and PspC), pneumococcal surface adhesin (PsaA), and ATP-dependent caseino...