Polycyclic aromatic hydrocarbons (PAHs) and quinones in the gas phase and as submicron particles raise concerns due to their potentially carcinogenic and mutagenic properties. The majority of existing studies have investigated the formation of quinones, but it is also important to consider both the primary and secondary sources to estimate their contributions. The objectives of this study were to characterize PAHs and quinones in the gas and particulate matter (PM 1 ) phases in order to identify phase distributions, sources, and cancer risk at two urban monitoring sites in the Guadalajara Metropolitan Area (GMA) in Mexico. The simultaneous gas and PM 1 phases samples were analyzed using a gas chromatography-mass spectrometer. The lifetime lung cancer risk (LCR) due to PAH exposure was calculated to be 1.7 × 10 −3 , higher than the recommended risk value of 10 −6 , indicating a potential health hazard. Correlations between parent PAHs, criteria pollutants, and meteorological parameters suggest that primary sources are the main contributors to the Σ 8 Quinones concentrations in PM 1 , while the secondary formation of 5,12-naphthacenequinone and 9,10-anthraquinone may contribute less to the observed concentration of quinones. Additionally, naphthalene, acenaphthene, fluorene, phenanthrene, and anthracene in PM 1 , suggest photochemical degradation into unidentified species. Further research is needed to determine how these compounds are formed.