Publisher rights This is the author's version of a work that was accepted for publication in Talanta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Talanta, VOL 103, 01/2012 General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Cite this article as: Zhen-Lin Xu, Yu-Dong Shen, Yuan-Ming Sun, Katrina Campbell, Yuan-Xin Tian, Shi-Wei Zhang, Hong-Tao Lei and Yue-Ming Jiang, Novel hapten synthesis for antibody production and development of an enzyme-linked immunosorbent assay for determination of furaltadone metabolite 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), Talanta, http://dx.doi.org/10. 1016/j.talanta.2012.10.059 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractA heterologous competitive indirect enzyme-linked immunosorbent assay (ciELISA) for the determination of the furaltadone metabolite 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) was developed. AMOZ was derivatised with 2-(4-formylphenoxy)acetic acid or 2-(3-formylphenoxy)acetic acid to obtain two novel immunizing haptens. The ability of these haptens in producing specific polyclonal antibodies against the nitrophenyl derivative of AMOZ (NPAMOZ) was compared with that of traditional immunizing haptens (derivatised AMOZ with 3-carboxybenzaldehyle or 4-carboxybenzaldehyle). The results indicated that the novel immunizing haptens were able to produce antibodies with almost a two-fold improvement in sensitivity of the ciELISA for NPAMOZ in comparison with the existing antibody based ELISAs. The differences in sensitivity were explained by the molecular modeling of the lowest energy conformations of NPAMOZ and the haptens. Another novel hapten, derivatised AMOZ with 2-oxoacetic acid, was synthesized and used as a heterologous coating hapten. The results showed that this strategy of using only a partial structure of the target molecule as the coating hapten was able to obtain a two to three-fold improvement in sensitivity. This study provided a modern approach for the development of an immunoassay with improved sensitivity for the metabolites of nitrofuran antibiotics.