Lateral transports of carbon and nitrogen are important processes linking terrestrial ecosystems and aquatic systems. Most previous studies made in temperate forests found that fluxes of carbon and nitrogen by runoff water varied in different forests, but few studies have been made in subtropical forests. This study was to investigate dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes at the catchment scale along a subtropical forest succession gradient from pine forest (pioneer) to coniferous and broadleaved mixed forest (transitional) to broadleaved forest (mature). Our results showed that DOC concentration significantly decreased (p<0.001) while TDN concentration significantly increased (p<0.001) in runoff water from pioneer to mature forests, which in turn resulted in a decrease in DOC flux and an increase in TDN flux, as mean annual runoff did not vary significantly among three succession forest catchments. The mean (6standard deviation) annual DOC flux was 118.1643.6, 88.3616.7 and 77.2611.7 kg ha 21 yr 21 for pioneer, transitional and mature forest catchments, respectively; and the mean annual TDN flux was 9.9 62.7, 18.263.0 and 21.2 64.5 kg ha 21 yr 21 for pioneer, transitional and mature forest catchments, respectively. The mature forest reduced DOC flux by increased soil chemical adsorption and physical protection. An increase in TDN flux from pioneer to mature forests was consistent with the previous finding that mature forest was nitrogen saturated while pioneer forest was nitrogen limited. Therefore large-scale conversion of pioneer forests to transitional or mature forests in subtropical China will reduce DOC concentration and increase TDN concentration in the down-stream water, which may have significant impact on its water quality and aquatic biological activities.