A collection of 169 strains, including 91 obtained from cases of gastroenteritis and 41 from localized tissue infections and infections of the eye and ear, was submitted to an extensive nutritional, physiological, and morphological characterization. The nutritional and physiological data obtained from these strains, as well as data for strains of other species of the genus Beneckea, were submitted to a numerical analysis which grouped the strains into clusters on the basis of phenotypic similarity. Strains from cases of gastroenteritis formed a group of three clusters which linked at a similarity value of 68%. These three clusters could not, however, be separated from each other by universally positive or negative traits, and on the basis of their overall phenotypic similarity were assigned to a single species, B. parahaemolytica. The majority of the strains from human, nonenteric sources segregated into two distinct clusters, one designated B. alginolytica and the other unassigned with respect to species (group C-2). B. parahaemolytica, B. alginolytica, and group C-2 could be readily distinguished from one another as well as from the remaining species of the genus Beneckea by multiple, unrelated, phenotypic traits. Activities of selected enzymes of glucose and gluconate catabolism in cell-free extracts of B. parahaemolytica, B. alginolvtica, and group C-2 suggested that these organisms utilized glucose primarily via the Embden-Meyerhof pathway and gluconate primarily via the Entner-Doudoroff pathway. Similar results were observed in the other members of the genus Beneckea.