Reaching and manual tracking are two very common tasks for studying human sensorimotor processes. Although these motor tasks rely both on feedforward and feedback processes, emphasis is more on feedforward processes for reaching, and more on feedback processes for tracking. The extent to which feedforward and feedback processes are interrelated when being updated is not settled yet. Here, using reaching and tracking as proxies, we examined the bidirectional relationship between the update of feedforward and feedback processes. Forty right-handed participants were asked to move a joystick so as to either track a target moving rather unpredictably (pursuit tracking) or to make fast pointing movements toward a static target (center-out reaching task). Visuomotor adaptation was elicited by introducing a 45° rotation between the joystick motion and the cursor motion. Half of the participants adapted to rotation first via reaching movements, and then with pursuit tracking, while the other half performed both tasks in opposite order. Group comparisons revealed a strong asymmetrical transfer of adaptation between tasks. Namely, although nearly complete transfer of adaptation was observed from reaching to tracking, only modest transfer was found from tracking to reaching. A control experiment (N=10) revealed that making target motion fully predictable did not impact the latter finding. One possible interpretation is that the update of feedforward processes contributes directly to feedback processes, but the update of feedback processes engaged in tracking can be performed in isolation. These results suggest that reaching movements are supported by broader (i.e. more universal) mechanisms than tracking ones.