Interactions between rhythmically moving limbs typically result in attraction to a limited number of coordination modes, which are distinguished in terms of their stability. In addition, the stability of coordination typically decreases with elevations in movement frequency. To gain more insight into the neurophysiological mechanisms underlying these stability characteristics, the effects of phasic voluntary muscle activation onto the movement pattern of the contralateral limb as well as onto the stability of interlimb coordination were examined. This was done in circumstances in which a minimal degree of movement-elicited afferent information was available to mediate the coupling influences. The task involved rhythmic application of isometric torque by one hand, while the other hand was moving rhythmically with unconstrained amplitude. The effects of two levels of applied torque, two coordination patterns (inphase and antiphase), and two movement frequencies were determined, both at the behavioural level (movement kinematics and kinetics) and the neuromuscular level (EMG). The isometric applications of torque clearly influenced the muscle-activation profile and movement pattern of the other limb, affecting both temporal variability and amplitude. Surprisingly, there were no differences between the two coordination patterns or between the tempo conditions. As such, the results did not conform to the Haken-Kelso-Bunz model for rhythmic movement coordination. These data suggest that the archetypal differences in stability of rhythmic bimanual coordination are contingent upon a correspondence between the limbs in terms of their respective tasks. This interpretation is elaborated in terms of the role of sensory feedback and the functional specificity of motor unit recruitment in rhythmic interlimb coordination.