Understanding the network usage patterns of university users is very important today. This paper focuses on the research of DNS request behaviors of university users in Shanghai, China. Based on the DNS logs of a large number of university users recorded by CERNET, we conduct a general analysis of the behavior of network browsing from two perspectives: the characteristics of university users’ behavior and the market share of CDN service providers. We also undertake experiments on DNS requests patterns for CDN service providers using different prediction models. Firstly, in order to understand the university users’ Internet access patterns, we select the top seven universities with the most DNS requests and reveal the characteristics of different university users. Subsequently, to obtain the market share of different CDN service providers, we analyze the overall situation of the traffic distribution among different CDN service providers and its dynamic evolution trend. We find that Tencent Cloud and Alibaba Cloud are leading in both IPv4 and IPv6 traffic. Baidu Cloud has close to 15% in IPv4 traffic, but almost no fraction in IPv6 traffic. Finally, for the characteristics of different CDN service providers, we adopt statistical models, traditional machine learning models, and deep learning models to construct tools that can accurately predict the change in request volume of DNS requests. The conclusions obtained in this paper are beneficial for Internet service providers, CDN service providers, and users.