To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator Fur regulates metabolism through transcriptional control of iron-responsive genes by binding conserved Fur box (FB) sequences in promoters during iron-replete growth. Our previous studies showed that Fur also controls the transcription of secondary regulators that may, in turn, control pathways important to pathogenesis, indicating an indirect role for Fur in controlling these downstream genes. To better define the iron-regulated cascade of transcriptional control, we combined three global strategies-temporal transcriptome analysis, genomewide in silico FB prediction, and Fur titration assays (FURTA)-to detect genomic regions able to bind Fur in vivo. The majority of the 300 iron-repressed genes were predicted to be of unknown function, followed by genes involved in iron metabolism, cell communication, and intermediary metabolism. The 107 iron-induced genes encoded hypothetical proteins or energy metabolism functions. We found 28 predicted FBs in FURTA-positive clones in the promoters and within the open reading frames of iron-repressed genes. We found lower levels of conservation at critical thymidine residues involved in Fur binding in the FB sequence logos of FURTA-positive clones with intragenic FBs than in the sequence logos generated from FURTA-positive promoter regions. In electrophoretic mobility shift assay studies, intragenic FBs bound Fur with a lower affinity than intergenic FBs. Our findings further indicate that transcription under iron stress is indirectly controlled by Fur through 12 potential secondary regulators.The acquisition of iron is essential for bacterial pathogenesis. Because iron is insoluble in aqueous environments at neutral pH and has the potential to produce damaging free radicals, the mammalian host tightly sequesters iron (1, 51), lowering the level of free iron available to invading microorganisms to well below what is needed to survive (34). Since survival in the host and hence virulence is dependent on the acquisition of iron, pathogenic bacteria must be able to sense iron availability and globally regulate the transcription of iron acquisition genes. For many gram-positive and gram-negative organisms, including the sexually transmitted disease pathogen Neisseria gonorrhoeae, the crucial balance between acquiring enough iron to grow and avoiding the toxic effects of excess iron is controlled by the ferric uptake regulator (Fur) protein (12, 27, 49). Typically, Fur acts as a transcriptional repressor by binding as a dimer, along with ferrous iron as a corepressor, to regulatory Fur box (FB) sequences in the promoters of iron-regulated genes under iron-rich growth conditions. As intracellular iron stores are depleted, the Fur-Fe 2ϩ dimer dissociates from the promoter, allowing the entry of RNA polymerase and subsequent transcription (22). Fur acts as a global regulator controlling not only the expression of iron acquisition...