Abstract. The impact of nonuniform spatial distribution of the luminescence coupling (LC) effect to the limiting cell conversion efficiency of multijunction solar cells (MJSCs) has been investigated. For this purpose, the laser beam induced current distribution maps of the limiting bottom cell have been acquired experimentally under varying middle-to-bottom cell LC efficiencies. The minimum and the maximum LC efficiencies demonstrated were 8.5% and 69%, respectively. To further analyze the measurement results, a quasi-two-dimensional simulation model considering the spatially nonuniform nature of the LC effect has been developed. A good agreement between the simulation and the measurement results suggests that the nonuniform LC current distribution is induced by optical phenomena such as photon escape and internal reflection. This nonuniformity then causes the absolute conversion efficiency of the limiting cell to be reduced by 1.35% at maximum LC efficiency. This reduction, when suppressed, can yield higher limiting cell conversion efficiency, which in turn may improve the overall MJSC conversion efficiency.