The majority of multi-agent system (MAS) implementations aim to optimise agents' policies with respect to a single objective, despite the fact that many real-world problem domains are inherently multi-objective in nature. Multiobjective multi-agent systems (MOMAS) explicitly consider the possible trade-offs between conflicting objective functions. We argue that, in MOMAS, such compromises should be analysed on the basis of the utility that these compromises have for the users of a system. As is standard in multi-objective optimisation, we model the user utility using utility functions that map value or return vectors to scalar values. This approach naturally leads to two different optimisation criteria: expected scalarised returns (ESR) and scalarised expected returns (SER). We develop a new taxonomy which classifies multi-objective multi-agent decision making settings, on the basis of the reward structures, and which and how utility functions are applied. This allows us to offer a structured view of the field, to clearly delineate the current state-of-the-art in multi-objective multi-agent decision making approaches and to identify promising directions for future research. Starting from the execu-