Computing modular coincidences can show whether a given substitution system, which is supported on a point lattice in R d , consists of model sets or not. We prove the computatibility of this problem and determine an upper bound for the number of iterations needed. The main tool is a simple algorithm for computing modular coincidences, which is essentially a generalization of the Dekking coincidence to more than one dimension, and the proof of equivalence of this generalized Dekking coincidence and modular coincidence. As a consequence, we also obtain some conditions for the existence of modular coincidences. In a separate section, and throughout the article, a number of examples are given.