This is a chapter surveying the current state of our understanding of tilings with infinite local complexity. It is intended to appear in the volume Directions in Aperiodic
One of the simplest non-Pisot substitution rules is investigated in its geometric version as a tiling with intervals of natural length as prototiles. Via a detailed renormalisation analysis of the pair correlation functions, we show that the diffraction measure cannot comprise any absolutely continuous component. This implies that the diffraction, apart from a trivial Bragg peak at the origin, is purely singular continuous. En route, we derive various geometric and algebraic properties of the underlying Delone dynamical system, which we expect to be relevant in other such systems as well.
This paper is intended to provide an introduction to the theory of substitution tilings. For our purposes, tiling substitution rules are divided into two broad classes: geometric and combinatorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial substitutions are just beginning to be examined, and some of what we present here is new. We give numerous examples, mention selected major results, discuss connections between the two classes of substitutions, include current research perspectives and questions, and provide an extensive bibliography. Although the author attempts to fairly represent the as a whole, the paper is not an exhaustive survey, and she apologizes for any important omissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.