Based on elastic collisions, the linear momentum of a fast neutron can be measured from as few as two consecutive recoil ion tracks plus the vertex position of the third collision, or 'two and half' ion tracks. If the time delay between the first two consecutive ion tracks is also measured, the number of ion tracks can be reduced to one and a half. The angular and magnitude resolutions are limited by ion range straggling to about ten percent. Multi-wire proportional chambers and light-field imaging are discussed for fast neutron tracking. Single-charge or single-photon detection sensitivity is required in either approach. Light-field imaging is free of charge-diffusion-induced image blur, but the limited number of photons available can be a challenge.1 H, 2 H and 3 He could be used for the initial development of fast neutron trackers based on light-field imaging.