Background
Carcinoembryonic antigen (CEA) as one of the most widely used tumor marker is used in the clinical diagnosis of colorectal, pancreatic, gastric, and cervical carcinomas. We developed an aptamer-based microchip electrophoresis assay technique for assaying CEA in human serum for cancer diagnosis.
Methods
The magnetic beads (MBs) are employed as carriers of double strand DNA that is formed by an aptamer of target and a complementary DNA of aptamer. After the aptamer in MB-dsDNA conjugate binds with target, the complementary DNA was released from MB-dsDNA conjugate. The released complementary DNA hybridizes with a fluorescein amidite (FAM) labeled DNA, and forms DNA duplex, which triggers the selective cleavage of FAM labeled DNA by nicking endonuclease Nb.BbvCI, and generating FAM labeled DNA segment. The released complementary DNA hybridizes with another FAM labeled DNA, resulting in a continuous cleavage of FAM labeled DNA, and the generation of large numbers of FAM labeled DNA segments. In MCE laser induced fluorescence detection (LIF), FAM labeled DNA segment is separated and detected.
Results
The linear range for CEA was 130 pg/ml~8.0 ng/ml with a correlation coefficient of 0.9916 and a detection limit of 68 pg/ml. The CEA concentration in the serum samples from healthy subjects was found be in the range 1.3 ng/ml to 3.2 ng/ml. The CEA concentration in the samples from cancer patients was found to be >15 ng/ml.
Conclusions
This method may become a useful tool for rapid analysis of CEA and other tumor markers in biomedical analysis and clinical diagnosis.