Hypothyroidism during pregnancy and the early postnatal period has severe neurological consequences for the developing offspring. The impact of milder degrees of perturbation of the thyroid axis as encompassed in conditions of subclinical hypothyroidism and hypothyroxinemia, however, has not been established. The present investigation examined the effects of graded levels of hypothyroidism, from subclinical to severe, on global gene expression in the developing rodent brain. Thyroid hormone insufficiency was induced by administration of propylthiouracil (PTU) to pregnant rats via drinking water from gestational day 6 until sacrifice of pups prior to weaning. In the first study a specialised microarray, the Affymetrix Rat Neurobiology array RN_U34, was used to contrast gene expression in the hippocampus of animals exposed to 0 or 10 ppm (10 mg/l) PTU, a treatment producing severe hypothyroidism. In the second study, a more complete genome array (Affymetrix Rat 230A) was used to compare gene expression in the neocortex and hippocampus of postnatal day (PN) 14 animals experiencing graded degrees of thyroid hormone insufficiency induced by delivery of 0, 1, 2 or 3 ppm PTU to the dam. Dose-dependent up- and down-regulation were observed for gene transcripts known to play critical roles in brain development and brain function. Expression levels of a subset of approximately 25 genes in each brain region were altered at a dose of PTU (1 ppm) that induced mild hypothyroxinemia in dams and pups. These data indicate that genes driving important developmental processes are sensitive to relatively modest perturbations of the thyroid axis, and that the level of gene expression is related to the degree of hormone reduction. Altered patterns of gene expression during critical windows of brain development indicate that thyroid disease must be viewed as a continuum and that conditions typically considered 'subclinical' may induce structural and functional abnormalities in the developing central nervous system.