The poly(3,4‐dioxypyrrole) (PXDOP) family of conducting and electroactive polymers has now been developed to the point that multiple synthetic routes allow many functionalized polymers with controllable optoelectronic and redox properties. These properties, which include high conductivity, multicolor cathodic and anodic electrochromism, and rapid redox switching, allow these materials to be used in a variety of applications that potentially include conducting coatings, electrochromic windows and displays, chemical sensors, bioactive materials, and mechanical actuators. Surprisingly, the scientific literature published on the PXDOP derivatives has been isolated and sparse compared to that of other conducting polymers. This report will highlight the synthesis and materials properties of PXDOPs and show how these powerful materials fit into the frontier of conducting polymers research.