Soot aerosol, which is a major pollutant in the atmosphere of urban areas, often contains not only carbonaceous matter but also inorganic material. These species, for example, iron compounds, originated from impurities in fuel or lubricating oil, additives or engine wear may change the physico-chemical characteristics of soot and hence its environmental impact. We studied the change of composition, structure, and oxidation reactivity of laboratory-produced soot aerosol with varying iron content. Soot types of various iron contents were generated in a propane/air diffusion flame by adjusting the doping amount of iron pentacarbonyl Fe(CO) 5 to the flame. Scanning electron microscopy (SEM)/energy-dispersive Xray spectroscopy (EDX) was combined with cluster analysis (CA) to separate individual particles into definable groups of similar chemical composition representing the particle types in dependence of the iron content in soot. Raman microspectroscopy (RM) and infrared spectroscopy were applied for the characterization of the graphitic soot structure, hydrocarbons, and iron species. For the analysis of soot reactivity, temperature-programmed oxidation