Unsaturated fatty acid (FA)–modified nanocellulose (m‐NC) shows potential application in improving mechanical properties of unsaturated polyester/m‐NC nanocomposites (UPe/m‐NC). A polyester matrix is obtained by polycondensation of maleic anhydride and products of poly(ethylene terephthalate) depolymerization with propylene glycol. Two methods of NC modification are performed: direct esterification with oleic acid, linseed, or sunflower oil FAs, and esterification/amidation with maleic acid/ethylene diamine (MA/EDA) bridging group followed by amidation with methyl ester of FAs. Increases of stress at break in the ranges from 148.8% to 181.4% and from 155.8% to193.0% for UPe/m‐NC composites loaded with 1 wt% of NC modified directly or via MA/EDA cross‐linker, respectively, are obtained. Results of the modeling of tensile modulus, by using the Cox–Krenchel model, show good agreement with experimentally obtained data. The effect of FAs' cross‐linking capabilities on the dynamic‐mechanical and thermal properties of the UPe/m‐NC is studied. Cross‐linking density, modulus, and Tg of the nanocomposite show appropriate relation with the unsaturation extent/structure of NC modification.